Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing

Identifieur interne : 004063 ( Main/Repository ); précédent : 004062; suivant : 004064

Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing

Auteurs : RBID : Pascal:10-0171865

Descripteurs français

English descriptors

Abstract

Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant kr from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0171865

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing</title>
<author>
<name sortKey="Flaten, Ellen Marie" uniqKey="Flaten E">Ellen Marie Flaten</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Norwegian University of Science and Technology</s1>
<s2>7491 Trondheim</s2>
<s3>NOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<wicri:noRegion>7491 Trondheim</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seiersten, Marion" uniqKey="Seiersten M">Marion Seiersten</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials and Corrosion Technology, Institute for Energy Technology</s1>
<s2>2027 Kjeller</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<wicri:noRegion>2027 Kjeller</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreassen, Jens Petter" uniqKey="Andreassen J">Jens-Petter Andreassen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemical Engineering, Norwegian University of Science and Technology</s1>
<s2>7491 Trondheim</s2>
<s3>NOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Norvège</country>
<wicri:noRegion>7491 Trondheim</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0171865</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0171865 INIST</idno>
<idno type="RBID">Pascal:10-0171865</idno>
<idno type="wicri:Area/Main/Corpus">004722</idno>
<idno type="wicri:Area/Main/Repository">004063</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium</term>
<term>Calcium carbonate</term>
<term>Corrosion</term>
<term>Crystal growth</term>
<term>Crystal lattices</term>
<term>Crystal seeds</term>
<term>Crystal structure</term>
<term>Diffusion</term>
<term>Ethylene glycol</term>
<term>Glycol</term>
<term>Growth from solution</term>
<term>Growth mechanism</term>
<term>Growth rate</term>
<term>Hydrates</term>
<term>Indium sulfide</term>
<term>Metastable states</term>
<term>Polymorphism</term>
<term>Precipitates</term>
<term>Precipitation</term>
<term>Quantity ratio</term>
<term>Second order</term>
<term>Solubility</term>
<term>Vaterite</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme croissance</term>
<term>Carbonate de calcium</term>
<term>Polymorphisme</term>
<term>Structure cristalline</term>
<term>Ethane-«1,2»-diol</term>
<term>Corrosion</term>
<term>Hydrate</term>
<term>Glycol</term>
<term>Précipité</term>
<term>Précipitation</term>
<term>Etat métastable</term>
<term>Croissance cristalline</term>
<term>Taux croissance</term>
<term>Ordre 2</term>
<term>Vatérite</term>
<term>Sulfure d'indium</term>
<term>Calcium</term>
<term>Diffusion(transport)</term>
<term>Effet concentration</term>
<term>Réseau cristallin</term>
<term>Solubilité</term>
<term>Méthode en solution</term>
<term>Germe cristallin</term>
<term>CaCO3</term>
<term>8110A</term>
<term>6150K</term>
<term>6166</term>
<term>8130M</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Corrosion</term>
<term>Calcium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant k
<sub>r</sub>
from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>312</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FLATEN (Ellen Marie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEIERSTEN (Marion)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANDREASSEN (Jens-Petter)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemical Engineering, Norwegian University of Science and Technology</s1>
<s2>7491 Trondheim</s2>
<s3>NOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials and Corrosion Technology, Institute for Energy Technology</s1>
<s2>2027 Kjeller</s2>
<s3>NOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>953-960</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000181690040150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0171865</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant k
<sub>r</sub>
from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A50K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A66</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A30M</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Carbonate de calcium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Calcium carbonate</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Calcio carbonato</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Polymorphisme</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Polymorphism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Ethane-«1,2»-diol</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ethylene glycol</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Corrosion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Corrosion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hydrate</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Hydrates</s0>
<s2>NA</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Glycol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Glycol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Glicol</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Précipité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Precipitates</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Précipitation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Precipitation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etat métastable</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Metastable states</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Taux croissance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Growth rate</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Ordre 2</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Second order</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Orden 2</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Vatérite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Vaterite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Vaterita</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Calcium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Calcium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Réseau cristallin</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Crystal lattices</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Solubilité</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Solubility</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Méthode en solution</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Growth from solution</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Método en solución</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Germe cristallin</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Crystal seeds</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>CaCO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>6150K</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6166</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8130M</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>116</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0171865
   |texte=   Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024